The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy
نویسندگان
چکیده
The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT) have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT). MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD50. MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4) than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1), mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH) by buthionine sulfoximine (BSO), largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU) resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies.
منابع مشابه
In vitro photodynamic therapy of childhood rhabdomyosarcoma.
Treatment of childhood rhabdomyosarcoma is limited by recurrent disease and the development of multidrug resistance. Therefore, novel treatment options are desirable. Photodynamic therapy (PDT) using the photodynamic agent hypericin is proposed as an alternative approach for intraoperative visualization and treatment of this disease. The aim of this study was to investigate in vitro effects of ...
متن کاملPhotodynamic Therapy with Hypericin Improved by Targeting HSP90 Associated Proteins
In this study we have focused on the response of SKBR-3 cells to both single 17-DMAG treatment as well as its combination with photodynamic therapy with hypericin. Low concentrations of 17-DMAG without any effect on survival of SKBR-3 cells significantly reduced metabolic activity, viability and cell number when combined with photodynamic therapy with hypericin. Moreover, IC10 concentation of 1...
متن کاملHypericin-photodynamic therapy inhibits proliferation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A
Objective(s): To elucidate the effects and potential mechanisms of hypericin-photodynamic therapy (HYP-PDT) for treating the human rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS) MH7A cell-line. Materials and Methods: MH7A cells were subjected to HYP-PDT intervention and apoptosis was evaluated via MTT, nuclear staining, and flowcytometry analyses. Intracellular reactive oxygen spec...
متن کاملCellular and molecular mechanisms of photodynamic hypericin therapy for nasopharyngeal carcinoma cells.
Hypericin-mediated photodynamic therapy (HY-PDT) has become a potential treatment for tumors and nonmalignant disorders. Some studies reported that HY-PDT could lead to apoptosis in some carcinoma cells. However, the molecular mechanism of HY-PDT remains unknown. In this study, we evaluated the molecular mechanisms of hypericin associated with light-emitting diode irradiation on the poorly diff...
متن کاملErythropoietin inhibits apoptosis induced by photodynamic therapy in ovarian cancer cells.
Recombinant human erythropoietin is widely used to treat anemia associated with cancer and with the myelosuppressive effects of chemotherapy, particularly platinum-based regimens. Erythropoietin is the principal regulator of erythroid cell proliferation, differentiation, and apoptosis. Recently, the antiapoptotic and proliferative effects of erythropoietin on nonhematopoietic cells were also es...
متن کامل